Update from the International Conference on Porphyrins and Porphyrias 2017: Bordeaux, France

Dr Mike Badminton

Senior Lecturer/Honorary Consultant Clinical Lead, Cardiff National Acute Porphyria Centre

Bwrdd Iechyd Prifysgol Caerdydd a'r Fro Cardiff and Vale University Health Board

PROGRAMME

- Sunday 25th June Patient Day
- Monday 26th
- Tuesday 27th
- Wednesday 28th
- https://www.icpp2017.org

Sunday 25th June - Patient Day

- Together we are stronger
- World tour: Introducing each patient group
- Test tube to the population: Evaluation/supervision of drugs
- How academic research interacts with patient care
- Psychological assistance The feeling of guilt
- Q&A Round Tables
 - Erythropoietic protoporphyria
 - Acute porphyrias
 - Cutaneous porphyrias bullous

SCIENTIFIC PROGRAMME

- Mixture of plenary lectures, short talks and posters
- Mark the retirement of two French Clinician Scientists
 - Professor Jean-Charles Deybach
 - Professor Hubert de Verneuil
- Acute porphyrias
- Cutaneous porphyria
- Other

Acute porphyrias - diagnosis, genetics

- Prof R Desnick, New York: AIP update
 - Work confirms prevalence of pathogenic mutations in general population is approx. 1:1700. Penetrance is ~1%.
 - Suggests predisposing or protective modifying genes
 - Needs to be an international collaboration to identify and confirm pathogenic mutations.
- Prof Gouya, Paris. How do we explain the difference between clinical penetrance in the general population (~1%) versus families (~23%). Conclusion: that other genes were involved plus environmental factors as well.
- Dr Whatley, Cardiff. Identifying possible genetic factors associated with acute attacks. Identified several areas of the genome that might be involved. Several candidate genes for further study.

Acute porphyrias – Treatment

- (see Alnylam Givosiran talk)
- Prof Fontanellas Spain; messenger RNA therapy to treat and prevent acute attacks in a <u>mouse model</u> of acute intermittent porphyria
 - mRNA for deficient enzyme
 - Coated in lipid nanoparticles
 - Intraveous injection
 - Lowers plasma and urine PBG and ALA
 - Demonstrates pre-clinical effectiveness
- Dr C Schmitt, France: Haem arginate/hematin treatment? Impact on disease course
 - Increase in number of recurrent patients since licensed
 - Investigated explanted livers
 - Repeated haem may self induce it's own requirement
 - More cautious approach to using haem

Acute porphyrias – Treatment

- Dr Helen Bustad, Norway: Pharmacological chaperonins for the treatment of AIP
 - Small chemical molecules that can improve enzyme function
 - Screen large numbers of different compounds for effect
 - Choose those which have a "test tube" effect for further study in cell culture and mouse model

Acute porphyrias - late complications

- > Dr Pallet, Paris. Kidney disease and porphyrias
 - Confirmed symptomatic acute porphyria (AIP) associated with slow decline in renal function
 - Some correlation with the specific mutation
 - Should we change our practice in UK?
- Prof. Wahlin, Stockholm. Liver cancer and liver fibrosis (scarring)
 - Affects noted mainly in AIP patients
 - Risk higher than general population
 - Screen above age of 50

Evening Visit to village of St Emilion

Erythropoietic porphyrias -CEP

- Prof Millet, Spain: Pharmacological chaperones as a treatment in CEP
 - Tested a library of chemical compounds that are known to improve protein functions
 - Model system created with common mutation (C73R)
 - Decreases accumulation of cell porphyrin in cell model
 - Testing in mouse model
- Prof John Phillips, Utah*:
 - Haem linked to iron availability may be able to limit the amount of ALA produced by limiting the availability of iron
 - When iron is limiting may be beneficial to prevent excess production of haem precursors.
 - J-M Blouin, Bordeaux. Showed effect in mice.
 - * Published case report in congenital erythropoietic porphyria patient confirms the effect

Erythropoietic porphyrias -CEP

- Francois Moreau–Gaudry, Bordeaux Metabolic correction of CEP with iPSCs
 - Obtain pluripotent stem cells from patient
 - Correct the genetic mistake by gene transfer (viral)
 - However now using new technology of targeted genome editing
 - Uses CRISPR/Cas9 (very topical)
 - Testing on mice at the moment
 - Still have risks that need to be ironed out (e.g. tumours)

Erythropoietic porphyrias – EPP

- Prof B Paw, Boston. Plenary on how iron and haem are managed in the red blood cell.
- Major contribution to our understanding of how haem is made and controlled in the bone marrow
 - New gene (CLPX) that causes erythropoietic protoporphyria.
 - Defective protein does not control ALAS and results in gain of function and increased protoporphyrin production (similar to XLEPP)
 - One family described

EPP- Research into treatments

- Dr F Halloy, Zurich. Oligonucleotide therapy for treatment of EPP.
 - Small artificial DNA molecules to correct the common mistake in ferrochelatase gene (the "low expression variant")
 - Experiments in cultured cells at the moment
 - Need to get the molecules into bone marrow cells
- P Cwiek, Zurich: Splicing modulation in mouse model of EPP
 - Gene therapy uses a viral vector to insert correcting DNA.
 - Mouse stem cells from bone marrow
- Prof L Gouya, Paris: Splice modulation treatment (not presented at conference)

Erythropoietic porphyrias – EPP

- Prof B Paw, Boston. Plenary on how iron and haem are managed in the red blood cell.
 - New gene (CLPX) that causes erythropoietic protoporphyria. Defective protein does not regulat ALAS and results in gain of function and increased protoporphyrin (similar to XLEPP)
- Prof Millet, Spain: Pharmacological chaperones as a

Dinner at Chateau Giscours

Other presentations

- The role of longitudinal observational studies in understanding natural history of different porphyrias.
 - Complement clinical trials
 - Target knowledge gaps
 - Encourage international collaboration, widen ethnic diversity
 - Contribute to clinical guidelines
 - Improve understanding of psychosocial burden of disease – patients and families
- Studies
 - EPNET the European Porphyria Registry
 - US Porphyria consortium
 - Explore: Natural history study

Other Presentations – QOL

- Ms H Naik, New York: EPP: Disease severity and quality of life.
 - Using new validated QOL questionnaire.
 - Allows focus on specific areas (pain, fatigue, physical function, depression)
 - Strong association wbetween severeity and certain domains.
- Ms H Naik, New York: Psychosocial issues in EPP; Parents, children and young adults perspective
 - Used 3 Focus groups: Documents age specific issues
 - Parents guilt; Teenagers difficulty adapting, family stress; Young adults -embarrassment at explaining.
 - More information, explanation, preparation from porphyria services
- J Andersen, Norway. QOL, health complaints and stress in AIP.
 - Mainly neurological health
 - Associated with increased stress and lower QOL

EPNET Association

- Formal (legal) association formed in May 2017
- Interim Steering Group for 12 months
- Objectives
 - Facilitate research
 - Optimise and harmonise diagnosis and treatment
 - Promotion and education via website
 - Improving diagnostic quality
 - Enhance training and education
- Self governing and financing

Summary

- New understanding of genetic factors in porphyria, but more to do:
 - Sharing on information on causative mutations
 - Identifying genetic influences affecting severity of porphyria
- Investigating new approaches to treatment of porphyria
 - Genetic: RNA interference, mRNA delivery, gene therapy
 - Small molecule therapies (chaperonins)
 - Primary and secondary care
- Improving collaboration and pooling resources
 - Regional (Europe, USA) and Internationally
- Improving diagnostic testing efficiency